河北省质量信息协会团体标准 《钢芯铝绞线》

(征求意见稿)

编制说明

标准起草工作组 2025年9月

一、任务来源

依据《河北省质量信息协会团体标准管理办法》,团体标准《钢芯铝绞线》由河北省质量信息协会于2025年7月份批准立项,项目编号为:T2025373。

本标准由洛阳三五电缆集团有限公司提出,由河北省质量信息协会归口。本标准起草单位为:洛阳三五电缆集团有限公司、哈沈线缆制造有限公司、华辰电缆有限公司、威克瑞线缆有限公司、金长城线缆有限公司、河北雁翎电缆有限公司、中盛弘通电力科技有限公司。

二、重要意义

钢芯铝绞线是一种由中心的钢线和外围的铝线共同组成的架空电线,中心的钢线起加强和支撑的作用,外围的铝线则负责导电。钢芯铝绞线结合了钢的高强度和铝的良好导电性,具有重量轻、强度高、耐腐蚀、使用寿命长等优点,广泛应用于各种电压等级的输电线路。无论是超高压的长距离输电,还是城市与乡村的配电网,都离不开它,其稳定运行直接关系到社会生产生活的正常运转,对保障工业生产持续、居民生活用电稳定、维持市场经济活跃起着关键作用。

随着电力行业快速发展和电网建设不断推进,钢芯铝绞线市场需求量持续增长。大数据中心、电动汽车充电设施等对电力供应要求日益严苛,城市规模扩张也促使配电网升级改造,而钢芯铝绞线作为成熟可靠的输电导线,市场需求呈旺盛态势,不断优化钢芯铝绞线有助于满足持续增长的电力传输需求。同时,《电线电缆行业"十四五"发展规划》中为钢芯铝绞线产业发展指明了方向。该规划提出的发展目标、主要任务和保障措施,强调了加强电网建设、提升电力输送稳定性与可靠性等重点。而电力传输的核心载体是钢芯铝绞线,规范其技术要求,是响应政策号召、推动电力行业朝着安全、钢芯铝绞线,规范其技术要求,是响应政策号召、推动电力行业朝着安全、

高效、环保方向发展的重要举措,对实现行业"十四五"规划目标,提升国家能源供应保障能力具有重要意义。

目前,关于钢芯铝绞线,已有国家标准GB/T 1179—2017《圆线同心绞架空导线》和GB/T 17048—2017《架空绞线用硬铝线》,对钢芯铝绞线的绞合导线要求等进行了规范,但是此标准内容已无法满足当前市场需求。因此,为了适应现有最新的钢芯铝绞线,特制订本标准。本标准对钢芯铝绞线的产品表示方法、绞合导线的要求、包装和标志等进行了进一步的规范。其制定对于提升钢芯铝绞线的生产效率、可靠性和安全性水平,推动钢芯铝绞线生产的技术创新,促进电力行业良性竞争与发展有着重要意义。

三、编制原则

《钢芯铝绞线》团体标准的编制遵循规范性、一致性和可操作性的原则。 首先,标准的起草制定规范化,遵守与制定标准有关的基础标准及相关的法律 法规的规定,按照GB/T 1.1-2020《标准化工作导则 第1部分:标准化文件的 结构和起草规则》《河北省质量信息协会团体标准管理办法》等编制起草;其 次,该标准的制定与现行的国家、行业、地方标准协调一致,相互兼容并有机 衔接;再次,该标准的制定符合钢芯铝绞线生产的实际情况,可操作性强。

四、主要工作过程

2025年6月,洛阳三五电缆集团有限公司牵头,组织开展《钢芯铝绞线》编制工作。2025年7月,起草组进行了《钢芯铝绞线》立项申请书及征求意见稿草案的编制,明确了编制工作机制、目标、进度等主要要求。主要编制过程如下:

(1) 2025年6月上旬,召开第一次标准起草讨论会议,初步确定起草小组

的成员,成立了标准起草工作组,明确了相关单位和负责人员的职责和任务分工;

- (2) 2025年6月中旬-2025年7月中旬,起草工作组积极开展调查研究,检索国家及其他省市相关标准及法律法规,调研各同类产品的情况,并进行总结分析,为标准草案的编写打下了基础;
- (3) 2025年7月中旬,分析研究调研材料,由标准起草工作组的专业技术 人员编写标准草案,通过研讨会、电话会议等多种方式,对标准的主要内容进 行了讨论,确定了本标准的名称为《钢芯铝绞线》。本标准起草牵头单位洛阳 三五电缆集团有限公司向河北省质量信息协会归口提出立项申请,经归口审核, 同意立项;
 - (4) 2025年7月22日, 《钢芯铝绞线》团体标准正式立项;
- (5) 2025年7月下旬—2025年8月中旬,起草工作组召开多次研讨会,对标准草案进行商讨,确定了本标准的主要内容包括钢芯铝绞线的代号、产品表示方法、要求、试验方法、检验规则、标志、包装、运输与贮存,初步形成标准草案和编制说明。工作组将标准文件发给相关标准化专家进行初审,根据专家的初审意见和建议进行修改完善,形成征求意见稿。

五、主要内容及依据

1. 范围

本文件规定了钢芯铝绞线的代号、产品表示方法、要求、试验方法、检验规则、标志、包装、运输与贮存。

本文件适用于架空输电线路用钢芯铝绞线。

2. 规范性引用文件及主要参考文件

本标准规范性引用文件及主要参考文件包括:

GB/T 1179—2017 圆线同心绞架空导线

GB/T 3048.2 电线电缆电性能试验方法 第2部分: 金属材料电阻率试验

GB/T 3048.4 电线电缆电性能试验方法 第4部分:导体直流电阻试验

GB/T 3428 架空导线用镀锌钢线

GB/T 4909.2 裸电线试验方法 第2部分:尺寸测量

GB/T 17048 架空绞线用硬铝线

GB/T 17937 电工用铝包钢线

GB/T 22077 架空绞线蠕变试验方法

JB/T 8137 (所有部分) 电线电缆交货盘

NB/T 42061-2015 钢芯软铝绞线

3. 术语和定义

GB/T 1179—2017界定的术语和定义适用于本文件。

4. 代号、产品表示方法

本文件规定了产品代号及表示方法,产品用型号、标称截面、绞合结构及本文件编号表示。

5. 要求

5.1材料

材料是钢芯铝绞线性能的核心基础,其质量直接决定绞线的导电性能、机械强度、耐腐蚀性及使用寿命,明确材料来源及合规标准,是保障钢芯铝绞线基础性能、降低工程风险的关键前提。

硬铝线依据GB/T 17048《架空绞线用硬铝线》确定,镀锌钢线依据GB/T 3428 《架空导线用镀锌钢线》确定,直接引用现行国标,避免因材料标准不统一导致的性能差异,确保不同生产企业使用的硬铝线、镀锌钢线质量一致性,便于后续产品质量管控及工程选型。

本标准与GB/T 1179—2017要求一致,均明确硬铝线符合GB/T 17048、镀锌钢线符合GB/T 3428,直接引用可确保团体标准与国标技术体系的兼容性,避免技术壁垒,同时保障标准的权威性和通用性。

5.2尺寸规格

尺寸规格直接影响钢芯铝绞线的导电性能、机械性能。绞线整体直径偏差超标会导致与金具配合间隙过大或过小,引发线夹握力不足或过度挤压;截面尺寸偏差会直接影响导电面积,导致直流电阻超标,增加输电损耗。因此,明确尺寸规格及偏差,是保障绞线结构稳定性、性能达标及工程适用性的关键。

绞线尺寸明确"宜按GB/T 1179—2017附录A中表A. 7进行选择",表A. 7涵盖 了常用钢芯铝绞线的标称截面、单线根数、直径、线密度等关键参数,是行业内 工程设计及生产的主流依据,可确保产品与现有输电工程设计体系兼容。

当d≤3.0 mm时, ±0.03 mm的偏差可确保小直径铝线的尺寸精度,满足绞合一致性要求。当d>3.0 mm时,偏差±1%d;大直径铝线尺寸偏差按比例控制,可在保证精度的同时,避免过度严苛的偏差要求导致生产难度及成本大幅上升。镀锌钢线按直径分段设置偏差,参考GB/T 3428对镀锌钢线直径偏差的分级要求。

绞线直径≥10 mm时, ±1%的偏差按比例控制可确保与大型金具的匹配性, 同时避免因直径过大增加风荷载或过小降低机械强度; 直径<10 mm时, ±0.1 mm的绝对偏差可简化生产控制, 同时满足配网金具的配合精度要求。

本标准明确"绞线的尺寸宜按GB/T 1179—2017附录A中表A. 7进行选择",而 GB/T 1179—2017仅规定"尺寸应符合附录A的规定",本标准允许在特殊工程需 求时偏离表A. 7,但需供需双方协商,更贴合实际生产及工程需求。

5.3短段绞线

短段绞线通常是生产过程中因设备调试、断线修复等产生的"非标准长度" 产品。对生产企业而言,5%的短段比例可接受,降低生产压力;对用户而言,5% 的短段数量及50%的长度下限,可减少接头数量,降低施工难度及运行风险。

GB/T 1179—2017未对短段绞线的长度及数量进行规定,而本标准补充短段绞线要求,可进一步规范交付质量,减少区域内供需纠纷,同时提升标准的实操性。

5.4外观

外观是绞线质量的"直观反映",目力可见的缺陷往往暗示内部质量问题: "目力可见"无需复杂检测设备,可在生产过程中实时巡检及成品验收时快速判定,提高质量管控效率。

本标准与GB/T 1179—2017要求相同,外观要求属于基础质量管控指标,GB/T 1179—2017的表述已足够清晰且行业认可度高,无需额外调整,可确保标准的兼容性。

5.5绞线拉断力

拉断力是钢芯铝绞线最核心的机械性能指标,直接决定架空线路的"安全系数"一架空绞线需承受自身重量、覆冰、风荷载、温差张力等多种外力,若拉断

力不足,可能导致绞线拉伸变形过大、断线,引发线路停运甚至安全事故。

额定拉断力(RTS)计算逻辑: "铝部分拉断力+钢部分拉断力"是行业通用计算方法,其中: 铝部分拉断力参考GB/T 17048中硬铝线的抗拉强度。计算钢部分拉断力时,1%伸长应力更贴近实际工作状态,可避免钢芯因长期过载产生塑性变形。当铝单线绞层数为4层时,外层铝线受绞合角度影响,实际受力分布不均匀,通过乘以95%的修正系数,可确保计算的RTS更贴近实际断裂载荷,避免理论值偏高导致安全系数不足。

本标准与GB/T 1179—2017中"绞线拉断力"的计算方法、钢部分拉断力定义及4层铝绞层修正系数相同。拉断力计算涉及线路安全设计,GB/T 1179—2017的方法已通过大量工程验证,技术成熟且安全可靠,直接引用可确保团体标准与国标设计体系一致,避免线路设计风险。

5.6直流电阻

直流电阻是反映钢芯铝绞线导电性能的核心指标,电阻越大,输电过程中电能损耗越大,不仅增加运营成本,还可能导致绞线发热过高,加速材料老化。

电阻率计算依据GB/T 17937《电工用铝包钢线》,该标准规定了铝包钢线的电阻率计算方法,而钢芯铝绞线的直流电阻主要由铝部分贡献,钢部分电阻率远高于铝,导电占比<5%,因此参考铝包钢线的电阻率计算逻辑,可确保电阻计算的准确性。

单位长度直流电阻直接引用GB/T 1179—2017表A. 7的数值,表A. 7针对不同标称截面的钢芯铝绞线,给出了20℃时的最大直流电阻,该数值基于GB/T 17048 中硬铝线的电阻率计算得出,同时考虑了绞合后的"集肤效应"及"邻近效应"对电阻的轻微影响,符合实际导电特性。

本标准明确"电阻率按GB/T 17937的规定计算",是为突出电阻率计算基准的规范性,避免企业误用其他电阻率标准。"绞线单位长度直流电阻见GB/T 1179—2017中的表A.7",与GB/T 1179—2017表述一致,确保不同企业、检验机构对同一规格绞线的直流电阻判定基准统一。

5.7弹性模量和线膨胀系数

弹性模量和线膨胀系数是钢芯铝绞线力学与热学性能的关键指标,直接决定架空输电线路的结构稳定性、应力分布及运维安全性。表4按"铝/钢单线根数"分类,覆盖了架空线路常用的绞线结构,设计单位可直接根据选用的绞线结构,从表中获取准确的弹性模量与线膨胀系数,无需自行计算。

GB/T 1179—2017表A. 7主要覆盖了常规结构,对"多钢芯+多铝层"的复杂结构未明确参数;本标准表4新增了54/19(铝54根、钢19根)、84/19、88/19等结构的参数,如54/19结构的弹性模量70. 2 GPa、线膨胀系数19. 5×10⁻⁶/℃。

5.8疲劳特性

疲劳特性是评估钢芯铝绞线在长期动态载荷下抗损伤能力的核心指标,直接决定架空输电线路的服役寿命与运维安全性。25%RTS的张力与3×10⁷次的振动次数,可等效覆盖绞线长期服役中最常见的动态载荷累积效应,通过该试验的产品能有效抵御风致振动导致的疲劳损伤,降低线路中期断股故障概率。明确"无断股"的合格要求,避免因判定标准模糊,导致供需双方争议。

本标准明确"打开线夹,观察线夹处绞线外观并剥层检查",而GB/T 1179—2017仅表述为"观察线夹处绞线外观并检查",未明确"打开线夹"与"剥层"的操作要求。

5.9节径比及绞向

节径比和绞向是决定钢芯铝绞线结构稳定性、机械性能及工程适用性的关键工艺指标。同心绞合可确保绞线截面呈圆形,外径均匀,既能降低风荷载,又能保证与金具的贴合度。相邻层反向绞合可抵消单线绞合产生的"残余扭矩",避免绞线出厂后自行扭转;外层右向为行业默认常规绞向,可确保与主流放线设备的转向匹配,减少放线阻力。

钢芯节径比按层数细化(6根层18~24,12根层15~21),既确保钢芯强度达标,又避免过度追求紧密绞合导致生产速度下降;铝绞层内层节径比放宽至10~16,可提升生产效率,同时外层10~13的严格范围保障表面质量,实现"内层提效、外层保质"的平衡。

与GB/T 1179—2017对比,本标准将"镀锌钢芯"进一步拆分为"6根层""12根层","铝绞层"拆分为"外层""内层",同样收紧镀锌钢芯区间,强化钢芯层结构稳定性,降低绞线运行中钢线滑移风险。

5.10接头

接头是钢芯铝绞线生产与使用中的关键薄弱环节,其质量直接影响绞线的机械强度、导电性能及长期运行安全性。钢线"无接头"要求虽严格,但彻底规避了核心强度风险;铝单线按层数设定接头数,既允许生产中因换盘、断线产生的必要接头,又避免接头过多影响性能,使生产企业无需为"零接头"承担过高成本。15 m的接头间距与140 MPa的抗拉强度要求,既确保接头性能达标,又未过度超出行业平均工艺水平,避免因标准过严导致中小企业无法达标。

与GB/T 1179—2017对比,本标准简化材料分类、明确单一强度要求,让标准更贴合生产需求,明确铝单线接头强度≥140 MPa,提升钢芯铝绞线产品的接头质量一致性,降低因接头强度不足引发的断线风险。

5.11线密度

线密度(单位长度质量)是钢芯铝绞线结构完整性、材料用量合规性及工程设计适配性的核心指标。GB/T 17048《架空绞线用硬铝线》规定硬铝线的密度为2.70 g/cm³, GB/T 3428《架空导线用镀锌钢线》规定镀锌钢线的密度为7.85 g/cm³。

本标准中"绞合增量应符合GB/T 1179—2017中表4的规定",直接引用国标GB/T 1179—2017的表4,利用国标成熟数据,确保线密度计算的通用性。

5.12过滑轮

过滑轮性能是评估钢芯铝绞线在工程施工阶段抗机械损伤能力的关键指标,直接关联线路放线施工的安全性与绞线服役初期的可靠性。经过过滑轮试验后绞线进行绞线拉断力试验,其结果应不小于按照GB/T 1179—2017中6.5.2规定计算的绞线额定拉断力的95%,95%的保留率可覆盖该合理损耗,同时为产品质量留出1%的安全冗余,避免因试验操作偏差导致误判。

本标准明确"宜按NB/T 42061—2015中附录B进行试验",NB/T 42061—2015 《钢芯软铝绞线》附录B专门针对架空绞线的过滑轮试验制定了详细流程,与钢芯铝绞线的结构特性完全适配,可确保不同企业的试验条件统一,避免因方法差异导致试验结果不可比。

6. 试验方法

本标准依据产品实际检测情况与GB/T 1179—2017、GB/T 3048.4、NB/T 42061—2015等标准规定了钢芯铝绞线的试验方法。

7. 检验规则

本标准规定了钢芯铝绞线的检验规则,包括检验、接受和拒收的规则。

8. 标志、包装、运输与贮存

本标准规定了钢芯铝绞线的标志、包装、运输与贮存。

六、与有关现行法律、政策和标准的关系

本标准符合《中华人民共和国标准化法》等法律法规文件的规定,并在制定过程中参考了相关领域的国家标准、行业标准和其他省市地方标准,在对等内容的规范方面与现行标准保持兼容和一致,便于参考实施。

七、重大意见分歧的处理结果和依据

无。

八、提出标准实施的建议

建立规范的标准化工作机制,制定系统的团体标准管理和知识产权处置等制度,严格履行标准制定的有关程序和要求,加强团体标准全生命周期管理。建立完整、高效的内部标准化工作部门,配备专职的标准化工作人员。

建议加强团体标准的推广实施,充分利用会议、论坛、新媒体等多种形式,开展标准宣传、解读、培训等工作,让更多的同行了解团体标准,不断提高行业内对团体标准的认知,促进团体标准推广和实施。

九、其他应予说明的事项

无。

标准起草工作组 2025年9月