团 体 标 准

T/ACEF XXXX—XXXX

流域典型水生生物环境 DNA 监测技术规范

Technical specification for environmental DNA monitoring of representative aquatic organisms in river basins

(征求意见稿)

2025 - XX - XX 发布

2025 - XX - XX 实施

目 录

ĦŲ	`晋	II
1	范围	1
2	规范性引用文件	1
3	术语和定义	1
4	技术流程	3
5	技术规范	4
	5.1 试剂耗材	4
	5.2样点布设	5
	5.3 水样采集	6
	5.4 水样过滤	6
	5.5 DNA 提取和纯化	6
	5.6 PCR 扩增	8
	5.7 测序与数据分析	8
	5.8 质量控制	9
附	表 A	.11
附	表 B	. 12
附	表 C	.13
阳	· 表 D	1/

前 言

本文件按照GB/T 1.1—2020《标准化工作导则 第1部分:标准化文件的结构和起草规则》的规定起草。

请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别专利的责任。

本文件由中华环保联合会提出并归口。

本文件起草单位:中国科学院生态环境研究中心、中国环境监测总站、北京师范大学、江西省生态环境监测中心、珠江水资源保护科学研究所。

本文件主要起草人:

流域典型水生生物环境 DNA 监测技术规范

1 范围

本规范规定了基于环境 DNA 技术开展长江和黄河流域典型水生生物类群监测的试剂耗材、样点布设、水样采集、水样过滤、DNA 提取、PCR 扩增、测序与数据分析和质量控制等内容。

本规范适用于长江和黄河流域的河流、湖泊、水库等水体中浮游动物、浮游藻类和鱼类的环境 DNA 监测。

2 规范性引用文件

下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期的引用文件, 仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 30989 高通量基因测序技术规程

GB/T 35537 高通量基因测序结果评价要求

GB/T 35890 高通量测序数据序列格式规范

T/CSES 81-2023 淡水生物监测 环境 DNA 宏条形码法

T/CTESGS 01-2022 长江流域河流水生态监测技术规程

HJ 710.7—2004 生物多样性观测技术导则 内陆水域鱼类

HJ 1295—2023 水生态监测技术指南 河流水生生物监测与评价(试行)

HJ 1296-2023 水生态监测技术指南 湖泊和水库水生生物监测与评价(试行)

HJ 494 水质 采样技术指导

SL 733-2016 内陆水域浮游植物监测技术规程

SC/T 9402-2010 淡水浮游生物调查技术规范

DB32/T 4178 河流水生态监测规范

DB43/T 432 淡水生物资源调查技术规范

DB11/T 2023 鱼类贝类环境 DNA 识别技术规范

DB11/T 2358-2024 淡水大型底栖无脊椎动物环境 DNA 监测技术规范

DB32/T 4539-2023 淡水生物环境 DNA 监测技术方法

3 术语和定义

下列术语和定义适用于本文件。

3.1 环境 DNA environmental DNA (eDNA)

是指从环境样本(如水、土壤、沉积物、空气等)中提取的、来源于生物体释放的游离 DNA 或细胞残留 DNA。DNA 片段可能来自生物体的代谢排泄、脱落细胞、生殖细胞、黏液、死亡分解等过程。就长江黄河流域而言,环境 DNA 除了上述来源外还来包括自于单细胞生物如浮游藻类。

3.2 水生生物 aquatic organisms

全部或部分生活在各种水域中的生物。主要的淡水生物类群包括浮游藻类、浮游动物、水生维管植物、大型底栖无脊椎动物和鱼类等。

3.3 23S 核糖体 DNA 23S ribosomal DNA (23S rDNA)

原核生物编码核糖体大亚基 23S rRNA 的 DNA 序列。

3.4 18S 核糖体 DNA 18S ribosomal DNA (18S rDNA)

真核生物编码核糖体小亚基 18S rRNA 的 DNA 序列。

3.5 12S 核糖体 DNA 12S ribosomal DNA (12S rDNA)

后生动物线粒体基因组上 12S rRNA 对应的 DNA 序列。

3.6 DNA 宏条形码 DNA metabarcoding

利用高通量测序获取环境样本(如水、沉积物、土壤、空气等)或混合生物组织中的特定 DNA 片段,根据物种间特定 DNA 序列差异识别物种,获取物种组成和群落结构。

3.7 操作分类单元 operational taxonomic unit (OTU)

DNA 宏条形码测序数据按照一定的序列相似性阈值进行聚类,获得的用于表征物种的分子水平的分类单元。

3.8 引物

在 DNA 复制过程中,结合于模板链上并作为复制延伸的起始位点和/或终止位点的,具有一定长度和顺序的寡核苷酸链。

3.9 聚合酶链式反应 polymerase chain reaction (PCR)

一种体外酶促合成特异 DNA 片段的分子技术,由高温变性、低温退火及适温延伸等几步反应组成一个周期,循环进行,使目的 DNA 得以迅速扩增,具有特异性强、灵敏度高、操作简便省时等特点。

3.10 阴性对照 negative control

不含待测物种或者所有物种 DNA 的样品(如灭菌超纯水),与待测样品同步实验,用于判断待测样品是否被污染。

3.11 阳性对照 positive control

已知物种组成的基因组 DNA 或人工合成含有目标序列的 DNA 片段的混合物,与待测样品同步实验,用于判断结果是否可靠。

3.12 二代测序 Next-generation sequencing

第二代测序又称为高通量测序,是基于 PCR 和基因芯片发展而来的 DNA 测序技术,具有通量高、速度快、读长短的特点。

3.13 序列覆盖度 sequence coverage

反映序列间相似程度的数值,即测序序列与文库序列间比对成功的片段在测序序列中所占碱基数目的比例,一般以百分数表示。

3.14 序列相似度 sequence similarity

反映序列间相似程度的数值,即序列间覆盖片段中相同 DNA 碱基数目所占的比例,一般以百分数表示。

3.15 浮游藻类 Phytoplankton

悬浮于水体、缺乏主动移动能力或移动能力较弱的光合自养型微型生物群落,常见的种类主要包括 硅藻、绿藻、蓝藻等类群,个体大小通常为 2-200 μm。

3.16 浮游动物 Zooplankton

悬浮或弱游泳能力的水生异养型动物群落,常见的种类包括原生动物、轮虫、枝角类、桡足类等, 个体大小通常为 50 μm-2 mm。

3.17 鱼类 Fish

脊索动物中数量最多的一类生物,终生在水中生活,以鳃呼吸,用鳍运动并维持身体平衡,多数体被鳞片,身体温度随环境变化,可以分为软骨鱼类和硬骨鱼类。

4 技术流程

流域典型水生生物环境 DNA 监测技术流程如下图 1。

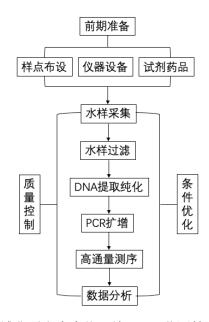


图 1 流域典型水生生物环境 DNA 监测技术流程图

5 技术规范

5.1 试剂耗材

5.1.1 实验试剂

推荐使用市售的试剂盒进行 DNA 提取和纯化。如使用 CTAB(十六烷基三甲基溴化铵)和醋酸钠 法提取和纯化 DNA,所需试剂如下:

- a) 乙二胺四乙酸(EDTA)溶液:分析纯,配置浓度为0.02 mol/L、pH=8.0;
- b) 氢氧化钠(NaOH)溶液:分析纯,配置浓度为1 mol/L;
- c) 三羟甲基氨基甲烷盐酸盐 (Tris-HCl) 溶液; 称取 15.76 g 三羟甲基氨基甲烷盐酸盐溶于适量灭菌超纯水中, 盐酸调节 pH 至 8.0, 定容至 1000 mL, 灭菌后备用, 配置浓度为 0.1 mol/L;
 - d) 盐酸 (HCl): 浓度 1.19 g/mL;
 - e) 十六烷基三甲基溴化铵(CTAB): 分析纯;
 - f) 氯化钠 (NaCl): 分析纯;
- g) CTAB 提取液: 称取 4 g CTAB 和 16.38 g NaCl, 溶解于适量灭菌超纯水中, 加入 8 mL EDTA 溶液和 20 mL Tris-HCl 溶液, 调整 pH 至 8.0, 定容至 200 mL, 灭菌后备用;
 - h) 酚氯仿异戊醇: 市售, Tris 饱和酚、三氯甲烷和异戊醇体积比 25:24:1, pH = 8.0;
 - i) 乙酸铵(CH₃COONH₄): 分析纯;
 - j) 乙酸铵溶液: 称取 57.81 g 乙酸铵溶于适量灭菌超纯水中, 定容至 100 mL, 配置浓度为 7.5 mol/L;
 - k) 无水乙醇(C₂H₆O): 分析纯;
 - 1) 75%乙醇: 无水乙醇和灭菌超纯水体积比 3:1 混合配制;
 - m) 蛋白酶 K: 市售,酶活力 ≥45 U/mg,浓度为 20 mg/mL。

进行 DNA 和 PCR 产物质量检测时,需要如下试剂:

- n) PCR 扩增使用市售扩增试剂,如 Ex Taq, LA Taq, Premix 等。
- o) 电泳缓冲液: 市售 TAE 缓冲液(1×), pH=7.8-8.8;
- p) 琼脂糖凝胶: 取市售的琼脂糖,加入TAE缓冲液(1×),配制浓度为1-2%;
- q) 分子量标准: 市售 100-2000 bp DNA 分子量标准试剂。
- r) DNA 染料: 推荐使用市售无毒性或低毒性 DNA 染料;

5.1.2 实验耗材

- a) 采样瓶: 1 L, 塑料材质具螺旋帽, 无 DNA 和生物残留;
- b) 混合纤维素酯滤膜: 孔径 0.45 μm;
- c) 手术剪;
- d) 尖头镊子;

- e) 离心管: 1.5 mL, 无 DNA 和生物残留:
- f) PCR 管: 0.2 mL, 无 DNA 和生物残留;
- g) 一次性无菌手套。

5.1.3 仪器设备

- a) 车载冰箱: 温控 4°C至-20°C;
- b) 采水器: 2L和5L;
- c) 冰箱: 温控-20 °C和 4 °C;
- d) 过滤装置: 配有砂芯滤器和真空泵;
- e) 烘箱: 室温-250°C;
- f) 水浴锅: 室温=100 °C;
- g) 高压蒸汽灭菌器: 可达 121 ℃、0.1 MPa 灭菌条件;
- h) 超净工作台;
- i) 低温离心机:转速可达 13000 rpm, 温控范围可至 4 ℃;
- j) PCR 仪: 温控范围 0-100 °C, 升温速度 6 °C/s, 配套 PCR 管 200 μL;
- k) 微量移液枪: 量程为 0.5-10 µL、20-200 µL 和 100-1000 µL 等;
- 1) 超微量紫外分光光度计: 测量体积最小 1 μL, 波长范围包括 230 nm、260 nm 和 280 nm;
- m) 水平电泳仪: 电场强度为 5-10 V/cm, 输出电压 6-400 V;
- n) 水平电泳槽;
- o) 凝胶成像系统: 具备 DNA 凝胶成像和拍照功能。

5.1.4 分析软件

高通量测序数据质量控制和分析软件: QIIME2(扩增子分析)、R 语言(数据处理)和 Seed(物种注释)等。

5.2 样点布设

采样点布设和监测频次参考标准 T/CSES 81-2023 和 T/CTESGS 01-2022 的规定。

对于河流型水体,每个监测位置的横断面设置 3 个代表性样点,分别设置在河流的两岸和中心。河流中心样点采用纵断面混合水样的采集方式,即水深 0-5 m、5-15 m、> 15 m 分别采集 1/3 水样,取样后混合为 1 个样品。其中,缓慢流动水体(< 2.0 m/s)的样点间隔为 5 km,快速流动水体(> 2.0 m/s)样点间隔为 10 km。对于湖泊和水库型水体,可按照湖库面积进行样点数量设定,具体可如下表 1。

表 1 湖库样点数设置参考值

湖库面积(km²)						
< 50	50-500	500-1000	1000-2000	> 2000		

					-
样点数量(个)	5-10	10-20	20-40	40-50	> 50
117/11/20	0 10	10 -0	_0 .0		2 0

样点监测设置在春、夏、秋、动四个季节,每个季节监测一次。

5.3 水样采集

水样采集根据标准 HJ 494 的规定执行。

样品采集时,使用相机拍摄并详细记录采样点周边环境条件,填写附表 A。采样体积一般为 1 L,每个样点设置 3 个重复样品。如果水体泥沙等悬浮颗粒物含量较高(浊度 > 50 NTU),可扩大采样体积至 2-4 L,但需保持所有采样点体积一致。

采样瓶装满后应密封并做好标记,置于车载冰箱于 4℃条件下冷藏运输,并在 2 h 内返回实验室,保存于 4 ℃冰箱或立即进行过滤操作。若在实验室 4 ℃冰箱内保存超过 1 d,则不建议继续使用。

5.4 水样过滤

5.4.1 预处理

过滤前需对使用的器具和耗材执行全面消毒。真空抽滤器经次氯酸钠消毒液浸泡 30 min,后用超纯水冲洗并烘干。剪刀、镊子依次经 75%乙醇清洗及超纯水浸洗处理。离心管等一次性塑料耗材经 121 ℃ 高压灭菌 18 min 后,烘干备用。

5.4.2 过滤流程

使用灭菌镊子夹取 0.45 μm 孔径的混合纤维素酯滤膜,放入抽滤器中抽滤水样。也可以选择其他孔径(如 0.22 μm)或材质(醋酸纤维素膜)的滤膜,但效果需要评估。

对于泥沙含量较高的水样,首先于 4 ℃条件下静置 30 min 沉淀悬浮颗粒物,再用直径 100 μm 筛网 去除大颗粒,最后使用多张滤膜进行过滤(一般不超过 5 张)。

每完成单一样品后,需拆卸抽滤器进行重新清洗消毒,方可继续使用。

5.4.3 滤膜保存

滤膜经灭菌镊子折叠后,密封于无菌的离心管中,按采样点编号归类,保存于-20℃冰箱,在7d内完成 DNA 提取操作。若保存时间在7d以上,滤膜保存于-80℃冰箱。若保存时间多余30d,则滤膜不建议继续使用。

5.5 DNA 提取和纯化

5.5.1 DNA 提取

利用试剂盒提取 DNA 时,按照试剂盒说明书流程进行操作。如以 CTAB 法进行滤膜 DNA 提取,具体步骤如下:

a)使用灭菌剪刀将滤膜剪为 1~3 mm² 的碎片,置于 1.5 mL 灭菌离心管中;如果过滤了多张滤膜,

则应从每张滤膜上都剪取一部分,剪碎后混合在一起继续使用;

- b) 向离心管中加入 750 μL CTAB 提取液及 20 μL 蛋白酶 K, 涡旋震荡混合 30 s, 置于 56℃水浴锅中孵育 3 h, 每隔 30 min 涡旋震荡一次;
- d) 小心吸取上层水相至新 1.5 mL 灭菌离心管,重复加入等体积 酚-氯仿-异戊醇混合液(体积比 25:24:1),震荡混匀后 4 °C、13000 rpm 离心 10 min;
- e)转移上清液至新离心管中,加入 2 倍体积预冷无水乙醇(-20 ℃保存)及 50 μL 7.5 mol/L 乙酸铵溶液,轻柔颠倒混匀,-20 ℃静置 30 min,倒掉上清液;
 - f) 加入 1 mL 75% 乙醇, 上下颠倒混匀, 4 ℃、13000 rpm 离心 10 min, 倒掉上清;
 - g)加入1 mL 75%乙醇,上下颠倒混匀,4 ℃、13000 rpm 离心 10 min,倒掉上清;
 - h) 开盖, 置于 25℃超净工作台中晾干 30 min;
 - i) 加入 50 μL 无 DNA 酶的超纯水溶解沉淀,轻弹管壁混匀;
- j)使用超微量紫外分光光度计测定样品浓度,OD260/280 比值应为 1.8~2.0 (无蛋白质及苯酚等),OD260/230 比值需 ≥ 2.0 (无碳水化合物,多肽,苯酚等);
- k) 取 5 μL DNA 溶液在电压 100 V 条件下进行 2.0%琼脂糖凝胶电泳 20 min,在凝胶成像系统中观察,标准为主带清晰明亮(>10 kb),无弥散状降解条带出现;
- 1) 将提取的 DNA 置于 4 ℃低温条件下保存备用,如一周内不使用则应保存于-20 ℃冰箱。若需长期保存,转移至-80 ℃超低温冰箱,避免反复冻融。DNA 样品在-80 ℃冰箱保存超过 30 d,则样品不建议继续使用。

5.5.2 DNA 纯化

利用试剂盒纯化 DNA 时,按照试剂盒说明书流程进行操作。如利用醋酸钠法进行纯化,具体步骤如下:

- a) 向 DNA 加入 1/10 体积 3 mol/L 乙酸钠溶液, 轻柔混匀;
- b)加入 2.5 倍体积预冷无水乙醇,颠倒混匀后 4 ℃静置 15 min;
- c) 4 ℃、4000 rpm 离心 30 min, 弃上清液, 保留沉淀;
- d) 加入 100 μL 预冷 75%乙醇, 4 ℃、3000 rpm 离心 15 min, 弃上清液, 重复洗涤一次;
- e) 开盖室温晾干 10min, 至无乙醇残留;
- f) 加入 1/2 原体积无 DNA 酶超纯水,轻弹混匀,-20 ℃保存备用;
- g) 重复 5.5.1 中的步骤进行紫外分光光度计和琼脂糖凝胶电泳检测, 确保 OD 值和完整性符合要求;
- h) 若需长期保存,转移至-80℃超低温冰箱,避免反复冻融。DNA 样品在-80℃冰箱保存超过 30 d,则样品不建议继续使用。

5.6 PCR 扩增

5.6.1 引物选择和标记

浮游藻类、浮游动物和鱼类等流域典型水生生物扩增引物信息如附表 B 所示。

根据样点数量,在相应扩增引物的 5'端需添加 6-10 个碱基的标记序列,对样点构建的文库进行区分。可参考附表 C 中列出的 8 碱基条形码标记序列,也可根据情况自行设计标记序列。

5. 6. 2 PCR 扩增

使用 5.6.1 中的引物对目标水生生物类群进行 PCR 扩增。

对 5.5.2 中纯化出的 DNA 模版进行稀释,可以选择稀释 1-100 倍,确保模版 DNA 浓度在 10-30 $ng/\mu L$ 。

扩增采用 25 μL 体系:包括 PCR 聚合酶 0.2 μL、聚合酶缓冲液 2.5 μL、脱氧核糖核苷三磷酸 2 μL、上下游引物各 1 μL、DNA 模板 1 μL、超纯水 18.3 μL。体积可为 25 μL 的整数倍,各组分体积可根据 PCR 聚合酶的要求添加。

PCR 仪反应程序设置: 预变性: $95 \% 5 \min$; 扩增: 每个循环包括 95 %变性 30-40 s、退火 30 s (退火温度参考附表 B)、72 %延伸 20-30 s,重复 30-35 % 个循环; 延伸: $72 \% 5-10 \min$ 。每个样品设置 3 % 个 PCR 技术重复。

5. 6. 3 PCR 产物检验

PCR产物经 1.0-2.0%琼脂糖凝胶电泳检测,并利用 5.5.2 的方法进行 PCR产物纯化和回收。纯化后的产物采用 1.0-2.0%琼脂糖凝胶电泳检测完整性,超微量紫外分光光度计方法检测扩增产物的质量和浓度。纯化后的产物置于 4℃低温条件下保存备用,如一周内不使用则应保存于-20℃冰箱。若需长期保存,转移至-80℃超低温冰箱,避免反复冻融。PCR产物在-80℃冰箱保存超过 30 d,则样品不建议继续使用。

5.7 测序与数据分析

5.7.1 高通量测序

参考标准 GB/T 30989 和 GB/T 35537 对 PCR 扩增产物进行建库和二代高通量测序,确保每个样本的预期的有效序列数不低于 10000 条。

5.7.2 数据筛选与处理

利用生物信息学软件对测序原始数据进行质控和预处理,去除低质量序列,具体步骤如下:

- a) 文库拆分:根据引物条形码将序列分配到对应采样点,剔除无效条形码序列及测序错误导致的错配序列;
 - b) 引物去除: 切除测序读长中的引物序列并过滤非特异性扩增产物;
 - c) 质量过滤:剔除低质量序列(Phred 评分 Q < 20, 含 N 的序列或单碱基重复≥ 8 bp);

- d) 长度筛选: 去除短于 10 bp 的无效读长;
- e) 末端修剪: 切除测序读长末端不稳定的低质量碱基(连续3 bp Q < 30);
- f) 序列拼接:对双端测序数据进行重叠拼接(最小重叠 20 bp),生成完整序列;
- g) 长度筛选:按目标片段长度进一步筛选有效序列;
- h) 数据输出:保存清洗后的高质量序列为 FASTA 格式文件。

5.7.3 OTUs 聚类及其物种注释

对预处理后的数据进行生物多样性分析和分类学注释,步骤如下:

- a) 序列去噪与聚类: 使用 DADA2(精确 ASV)或 UPARSE(97%相似度 OTU)算法生成代表性序列:
 - b) 嵌合体剔除:基于参考数据库(如 SILVA 或 UNITE)去除嵌合体序列;
 - c) 数据库比对: 使用 BLASTn 比对 NCBI 或本地数据库;
 - d) 结果筛选: 保留相似度 ≥97%、覆盖度 ≥85%的高置信匹配结果;
 - e) 分类解析: 提取物种分类信息(界→种),并剔除未分类至门级的序列;
 - f) 数据输出: 生成 OTU 丰度表及物种注释结果,提取物种的分类信息,包括界、门、纲、目、科、属、种等,填写监测统计表(附表 D)。

5.8 质量控制

5.8.1 样品采集和保存

- a) 每批次样品设置 1 个采样空白(使用灭菌超纯水);
- b) 每个采样点平行采集 ≥ 3次独立水样(间隔 ≥ 10min);
- c) 样品采集后立即置于4 ℃车载冰箱中冷藏保存;
- d) 实验室接收后,滤膜或水样需保存于-20℃或-80℃冰箱保存;
- e) 样品冻融次数不超过2次;
- f) 详细记录采样时间、天气、水温、pH 值等环境参数。

5.8.2 样品过滤

- a) 抽滤器使用前经 10%次氯酸钠浸泡 30 min 消毒,后使用无 DNA 酶超纯水冲洗 3 次;
- b) 每完成一个样点过滤后,需拆卸抽滤装置并重新消毒;
- c) 每批次样品设置 1 个抽滤空白(灭菌超纯水过滤);
- d) 高浊度水样滤膜更换不超过5张/样品。

5.8.3 DNA 提取

- a) 使用 121 ℃高压灭菌 18 min 的耗材;
- b) 每批次 DNA 提取设置 1 个空白对照(无滤膜);

- c) DNA 纯度要求: OD260/280 = 1.8-2.0, OD260/230 ≥ 2.0;
- d) 通过 2%琼脂糖凝胶电泳验证 DNA 完整性,主带应清晰(>10 kb),无降解弥散条带。

5.8.4 PCR 扩增

- a) 同一批样品 DNA 模板用量保持一致;
- b) 每个样品设置 3 个 PCR 技术重复;
- c) 阳性判定标准: ≥2 个重复出现目标条带,仅1个重复阳性时需重新检测;
- d) 每 PCR 板设置 1 个阴性对照(灭菌超纯水);
- e) 每 PCR 板设置 1 个阳性对照(已知物种 DNA)。

5.8.5 测序与数据分析

- a) 剔除低质量读长(Q<20);
- b) 剔除短序列(<10 bp);
- c) 去除嵌合体序列;
- d) OTU 聚类采用 97%相似度阈值(UPARSE);
- e) 或采用 ASV 去噪(DADA2);
- f) 保留相似度 ≥ 97%且覆盖度 ≥ 85%的注释结果。

5.8.6 对照设置

- a) 采样空白:每批次不少于1个,使用灭菌超纯水;
- b) 抽滤空白:每批次不少于1个,使用采样后的灭菌超纯水;
- c) 提取空白:每批次不少于1个,使用灭菌超纯水过滤的滤膜;
- d) PCR 阴性对照:每批次扩增不少于1个,使用灭菌超纯水为模版,要求无扩增条带;
- e) PCR 阳性对照:每批次扩增不少于 1 个,使用已知物种的 DNA 为模版,要求目标条带扩增清晰。

5.8.7 其他质控要求

- a) 对于进行分子生物学操作的人员,应具有半年以上的实验室操作经验和分子生物学实验经验, 需通过实验室安全培训;
- b) 实验人员需穿戴一次性手套、口罩和实验服;
- c) 不同样点间操作需更换手套;
- d) 定期对实验台面、移液器等设备进行消毒;
- e) 保存所有原始数据和中间分析结果;
- f) 定期进行实验室内交叉比对测试与分析。

附表

附表 A

(资料性)

环境 DNA 采样记录表

环境 DNA 采样信息表如表 A.1 所示。

表 A.1 环境 DNA 采样信息表

站点名称:	站点编号:	坐标定位:	站点类型:				
样品编号:	样品编号: 采样时间:						
采样体积:		运输条件:					
天气描述: (气温、降雨、湿度、风向、风力等)							
生境描述: (植被、原 	生境描述: (植被、底质、岸带、人为扰动等)						
小臣拼决 (小沟 5	。 2. 11 · 11 · 11	-	丰。 ΔΥ				
水质描述: (水深、透	5円度、水温、pn、	俗判、益及、叶绿。	系 a 寺)				
站点照片: (上游、下游、样点等)							
24	M1. 11 W// /1 \						

附表 B

(资料性)

长江黄河流域典型水生生物环境 DNA 监测引物信息

流域典型水生生物环境 DNA 监测引物信息如表 B.1 所示。其他常用浮游动物、浮游藻类和鱼类环境 DNA 监测引物可参考 T/CSES 81-2023 中的附表 C.1。

附表 B.1 长江黄河流域典型水生生物环境 DNA 监测引物信息表

序号	物种类别	引物长度	GC 含量	退火 温度	引物序列
1	浮游动物	19 bp 和 20 bp	42.11% 和 38.10%	55-58℃	F: AAGRCGATYAGATACCGYC R: TCYGTCAATTYCTWYAAGTT
2	浮游藻类	18 bp 和 20 bp	50%和 50%	53-56℃	F: GGACAGAAAGACCCTATG R: TCAGCCTGTTATCCCTAGAG
3	鱼类	17 bp 和 18bp	64.71%和 55.56%	57-60 °C	F:ACACCGCCCGTCACTCT R:CTTCCGGTACACTTACCA

附表C

(资料性)

常用引物参考标记序列表

常用引物参考标记序列如表 C.1 所示。

附表 C.1 常用引物参考标记序列表

序号	标记序列	序号	标记序列	序号	标记序列
1	ACCTAGCA	17	CGTTGCTT	33	CAGTTCAG
2	ACGACTAC	18	CTACGATG	34	CGTAATCG
3	CAAGACCT	19	CTCAAGTG	35	CAACCTAG
4	CTGAGACT	20	CTTCTCCT	36	GACAGAGT
5	GAGAGTGT	21	GAAGCTTC	37	CATGGATC
6	GTTGGAAG	22	GCATAAGG	38	GATCCAAC
7	TCTGCTGT	23	GGATTACC	39	CTAGCTAG
8	TGCTGATG	24	GTAGCATC	40	GCTACGTA
9	AGACGTCT	25	TAGCTACG	41	GACTGTGT
10	AGTCACTG	26	TCAGTCAG	42	GTGAGTGA
11	ATCCGGAT	27	TCCTCTAG	43	GTACGAAG
12	ATTAGCCG	28	TGTCACTC	44	TTATCGCC
13	CACTCTCA	29	TGTCGTGA	45	TATTCCGC
14	CCATCGTT	30	TTCGCCTA	46	TCGACAAC
15	CCTACCAT	31	ACACCACA	47	TGCAGTAC
16	CGAACGAA	32	ATGCTTCC	48	TTGCTTCG

附表 D

(资料性)

水生生物环境 DNA 监测结果统计表

水生生物环境 DNA 监测结果统计表如表 D.1 所示。

附表 D.1 水生生物环境 DNA 监测结果统计表

样品	采集时间:	長时间: 采样坐标定位:		记录人:			记录时间:	
序			物	种分类信息	I.			测序
号	界	门	纲	目	科	属	种	丰度